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Pharmacological MRI (phMRI)

The need to better understand drugs’ action

The buprenorphine is an opioid – class of analgesic molecule.

Such medication induces a patient-dependent analgesic effect

Synchropioid project: randomized, double-blinded, study design

[11C]Buprenorphine

PET fMRI
Fixation of the 

buprenorphine in the brain
Modification of the neural 

activation
Analgesic effect

Level of pain rating

Receptor occupation● NaCl (50%)
● Buprenorphine (50%)

● [11C]Buprenorphine

Figure: Illustration of the different steps studied in the synchropioid protocol.
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Pharmacological MRI (phMRI)

fMRI signal description

BOLD signal Haemodynamic 
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Noise

Figure: Illustration of BOLD signal modeling (Ogawa et al., 1998).

The interest of estimating the HRF

The HRF models a complex cascade of events produced notably by the
glial cells and the vascular system.

Its shape (the haemodynamic delay) will be affected by drugs.

Its estimation for the whole brain will characterize the effect of drugs in
the brain.
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BOLD signal modeling

Main features

Disentangle the neurovascular coupling from neural activity

Paradigm-free approach

Model the whole brain (multivariate model)

Illustration of the BOLD signal decomposition

( )

Observed BOLD
data

Neurovascular
coupling terms

Neural activation
terms

Error
term

= *
.

Figure: Illustration of the low-rank multivariate BOLD signal model (Cherkaoui et al.,
under review, NeuroImage, 2021).

8 / 41



BOLD signal modeling

Main features

Disentangle the neurovascular coupling from neural activity

Paradigm-free approach

Model the whole brain (multivariate model)

Illustration of the BOLD signal decomposition

( )

Observed BOLD
data

Neurovascular
coupling terms

Neural activation
terms

Error
term

= *
.

Figure: Illustration of the low-rank multivariate BOLD signal model (Cherkaoui et al.,
under review, NeuroImage, 2021).

9 / 41



BOLD signal modeling

HRF modeling

FWHM

TTP

t

Figure: Illustration the HRF modeling.

We dilate the time
axis of a reference
HRF (Friston et
al., 1998)

The Time-To-Peak
(TTP) and the
Full Width at Half
Max (FWHM)
evolve jointly

Formalization of our model

Y =

(
M∑

m=1

Θ>mvδm

)
∗̇

(
K∑

k=1

w>k uk

)
+ E (1)
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BOLD signal modeling

Parameter estimation

arg min
(W ,U,δ)

1

2

∥∥∥∥∥Y −
(

M∑
m=1

Θ>mvδm

)
∗̇

(
K∑

k=1

w>k uk

)∥∥∥∥∥
2

F

+ λ

K∑
k=1

‖∇uk‖1

subject to ∀k, ‖wk‖1 = 10, ∀j ,wkj ≥ 0, ∀m, δm ∈ [0.5, 2]

with λ = λf λmax such that λf ∈ [0, 1]

(2)

Alternated minimization strategy:

Estimation of uk : TV regularization – Proximal Gradient Descent (PGD)

Estimation of wk : projected gradient descent

Estimation of δm : projected gradient descent
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Single subject illustration (task-fMRI)

Preprocessing and acquisition parameters:

1 motor task-fMRI 3 min 34 s acquisition drawn at random from the
Human Connectome Project (HCP) dataset (Van Essen et al., 2013).

temporal resolution: TR = 0.753 s.

classical preprocessing done with fmriprep.

Decomposition parameters:

K = 30 (number of spatio-temporal components)

M = 96 (number of regions based on the ’Harvard-Oxford’ parcellation,
Desikan et al., 2006)

λf = 0.8 (TV regularization parameter for the temporal components)
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Single subject illustration (task-fMRI)

Experimental condition: left-hand motor action

(a)

(c)

(b)
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mean Observed BOLD mean estimated neural activation

x=39
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z=51
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y=-24 0 10 20 30 40

Time [s]

0.0

1.0

TTP=6.9s

Figure: (a) right motor cortex spatial map – (b) Estimated HRF (for those voxels) –
(c) Estimated neural signal (for the selected voxels)

Remarks

The multivariate modeling allows to recover:
coherent neural activation signals (w.r.t. the experimental paradigm).
well known functional networks.
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Single subject illustration (rs-fMRI)

Preprocessing and acquisition parameters:

1 rs-fMRI 6min acquisition drawn at random from the UK Bio Bank
(UKBB) dataset (Sudlow et al., 2015).

temporal resolution: TR = 0.735 s.

classical preprocessing done with fmriprep.

Decomposition parameters:

K = 20

M = 96 (’Harvard-Oxford’ parcellation)

λf = 0.8
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Single subject illustration (rs-fMRI)

Neural activation estimation:

Left motor cortex:
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Figure: Component n◦14 (w14, u14) - left motor cortex

Visual cortex:
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Figure: Component n◦17 (w17, u17) - Visual cortex
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Single subject illustration (rs-fMRI)

Neurovascular coupling estimation:

HRF example (vδ, Θ):
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Figure: HRF examples

Neurovascular map:
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Figure: Spatial distribution of the HRF parameter δ
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fMRI temporal resolution limitation of our method

Temporal resolution limitation:

Time-To-Peak map:
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Figure: Spatial distribution of the TTPs.

Time-To-Peak characteristic: standard deviation = 0.43 s, max-min =
2.24 s.

The model needs a temporal resolution about one second: Repetition
Time (TR) ≤ 1.0 s.
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Single subject illustration (rs-fMRI)

Summary of the single subject decomposition:

Neural activity estimation

The spatial maps feature symmetric sparse maps with compact activated
regions.

We recover well known functional networks: motor network, visual
network, auditory network, Default Mode Network (DMN), Control
Executive Network (CEN), etc.

Neurovascular coupling estimation

We recover a smooth spatial neurovascular coupling map.

The visual cortex features fast haemodynamic delays (Taylor et al., 2018).
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Experimental validation on the UKBB dataset

Goal:

Characterization of patients with an history of stroke.

Preprocessing and acquisition parameters:

48 rs-fMRI 6min acquisitions drawn at random from the UKBB dataset
separated in two groups:

subjects who suffered from a stroke in the past
healthy subjects.

Decomposition parameters:

K = 20

M = 96 (’Harvard-Oxford’ parcellation)

λf ∈ {0.001, 0.22, 0.45, 0.67, 0.9}

Quantification of the asymmetry:

IHD(δs
R, δ

s
L) =

‖δs
L − δs

R‖2

‖δs
L+R‖2

, ∀s = 1, . . . , 24.
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Experimental validation on the UKBB dataset

Distribution of the neurovascular
asymmetry:
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Figure: IHD distribution for each group.

Conclusions

The spatial distribution of the
HRF parameters ((δm)m) is more
asymmetric for subjects who
suffered from a stroke in the past.

We observe an inter-subject
variability within this group.
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Experimental validation on the UKBB dataset

Goal:

Classify each subject to its corresponding age group using his
haemodynamic estimates.

Preprocessing and acquisition parameters:

486 rs-fMRI 6min acquisitions drawn at random from the UKBB dataset
separated in two age-groups.

Decomposition parameters:

K = 20

M = 96 (’Harvard-Oxford’
parcellation)

λf ∈ {0.001, 0.22, 0.45, 0.67, 0.9}

30 40 70
Age

0

20

40

60

80

44 64

Figure: Age histogram
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Experimental validation on the UKBB dataset

Classification score:

       0.5           0.7           0.9

Accuracy (average on 10 trials)

Temporal
components
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HRF dilation
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classification
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Figure: Classification score (best score:
0.74).

Conclusion

The HRF parameters ((δm)m) and
the HRF shape ((vδm )m) predict
the age group.

Our model captures the
degradation of the neurovascular
coupling induced by aging (West
et al., 2020).
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Experimental validation on the UKBB dataset

Running times

In average one decomposition corresponds to: 500 time-frames and
8500 voxels (after a spatial sub-sampling to increase the signal-to-noise
ratio).

For a single subject decomposition time: 30 s on 1 CPU.

For the UKBB dataset decomposition time for the age experiment:
approximately 12 hours on 40 CPUs.

Remark

I made an effort to provide fast algorithms and an efficient Python
implementation.

https://github.com/hcherkaoui/hemolearn
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Problem formulation

Minimization of

min
u∈RT

1

2
‖y − v ∗ u‖2

2 + λ‖u‖TV. (3)

Related usage: Estimation of the neural activation signal u from the BOLD
signal y with a fixed HRF v .

0 01m54s 03m49s

u v ∗ u y = v ∗ u + ε

Figure: 1D fMRI signal deconvolution performed using TV regularization.
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Problem formulation

Generalization of the optimization problem:

Original problem

min
u∈RT

1

2
‖y − v ∗ u‖2

2 + λ‖u‖TV. (4)

We replace v ∗ u by Au to consider a more general case.

Minimization of

min
u∈RT

1

2
‖y − Au‖2

2 + λ‖u‖TV. (5)
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Problem formulation

Equivalent re-formulation of the problem in 1D

Analysis formulation Synthesis formulation

minu∈RT
1
2
‖y − Au‖2

2 + λ ‖Du‖1︸ ︷︷ ︸
‖u‖TV

minz∈RT
1
2
‖y − ALz‖2

2 + λ‖z‖1

with u = Lz and L = D−1

Which formulation to choose:

We demonstrated, in Cherkaoui et al., NeurIPS, 2020, that the convergence
rate of Analysis is much faster than the Synthesis.
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Classical minimization of the problem

Proximal Gradient Descent (PGD):

ut+1 = proxµ‖·‖TV (ut − µA>(Aut − y)). (6)

Equivalent to a Recurrent Neural Network:

ut+1 = proxµ‖·‖TV (Wuut + Wyy). (7)

Wyy proxµg u∗

Wu

(a) Proximal Gradient Descent (PGD) - Recurrent Neural Network
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Unrolling the analysis formulation

How to unroll proximal gradient descent?

Wyy proxµg u∗

Wu

(a) PGD - Recurrent Neural
Network

y

W
(0)
y

prox
µ(1)g W

(1)
u

W
(1)
y

prox
µ(2)g W

(2)
u

W
(2)
y

prox
µ(3)g u(3)

(b) LPGD - Unfolded network for Learned PGD with T = 3

(Gregor and Le Cun, 2010)

How to compute the proxµ‖·‖TV for each layer in a differential way?
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Calculation of the proximal operator

Two approaches for differential computations of prox TV:

proxµ‖·‖TV (x) = arg min
u∈RT

1

2
‖x − u‖2

2 + µ‖u‖TV . (8)

Approximate the operator

Use the equivalent synthesis
formulation of Eq. (8) and a
LISTA network (Gregor and Le
Cun, 2010) to approximate the
operator.

Use the back-propagation to
compute the gradient of the
proxµ‖·‖TV (·) approximation.

Compute numerically the operator

Solve the proximal operator
numerically (Condat, 2013).

Use the formula provided by
Cherkaoui et al., NeurIPS, 2020 to
compute the gradient of
proxµ‖·‖TV (·).
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Experimental validation on real fMRI data

Preprocessing, acquisition and decomposition parameters:

1 rs-fMRI acquisition drawn at random from the UKBB dataset.

We retain only 8000 cropped time-series of 3 minute 3 seconds.

We fix the HRF v and estimate the neural activity signal u for each voxel.

Performance comparison

0 5 10 15 20 25
Layers t

10−3

E
[ P

x
(u

(t
) )
−
P
x
(u
∗ )
] Accelerated PGD - analysis

LPGD-Taut
Figure: Performance comparison: Our
analytic prox-TV derivative method
outperforms the PGD in the analysis
formulation.
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Pharmacological MRI (phMRI)

The Synchropioid cohort

Opioid-naive healthy volunteers: 30 subjects under placebo; 30 subjects
under analgesic dose of buprenorphine.

90 min of [11C]-buprenorphine PET imaging acquisition: localize the
distribution of buprenorphine in the brain (partial agonist of µ-opioid
receptors).

2 rs-fMRI sessions of 14 min: characterize the effect on the neurovascular
coupling simultaneously to PET imaging.

The Synchropioid protocol

Structural 
MRI

T1-3D

B0 
map

PET acquisition (90 min)

0 30 60 90

PET

MRI
Rs-fMRI 

N°1
Rs-fMRI 

N°2
Rev 

Blips 

Injection
 [11C]buprenorphine (Bup)
+ Bup 0.2 mg OR NaCl 0.9% t

Figure: Illustration of the imaging protocol of the Synchropioid project.
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Neurovascular coupling estimation

Preprocessing and acquisition parameters:

2 rs-fMRI 14 min acquisition for each (2 volunteers on placebo condition
and 2 volunteers on analgesic dose of buprenorphine).

temporal resolution: TR = 0.8 s.

classical preprocessing done with fmriprep.

Decomposition parameters:

K = 20

M = 122 (’BASC’ parcellation, Bellec et al., 2013)

λf = 0.1
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Neurovascular coupling estimation
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Figure: Maps of HRF dilation parameters δ for rs-fMRI N◦1 (Adriaens et al., 2014).
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Buprenorphine spatial distribution

Figure: Spatial distribution of [11C]buprenorphine uptake (SUVr maps).

Conclusion

The spatial distribution of [11C]buprenorphine is concordant with the
known distribution of µ-opioid receptors (highest concentration in the
putamen and the insula), Zubieta et al., 2000 and Greenwald et al., 2003.

The highest [11C]buprenorphine uptakes are concordant with the slowest
haemodynamic delays (Cherkaoui et al., submitted to OHBM, 2021).

36 / 41



Two points analysis

Variability over time across subjects:

run-1
~40min A.I.

0.50

0.57

0.64

0.71

0.78

run-2
~1h15min A.I.

sub-01

sub-04

sub-02

sub-03

Figure: Evolution of the haemodynamic
responses δ in each participant.

Conclusion

We capture the effect of the
buprenorphine on the
neurovascular coupling.

We observe a significant variability
across time and subjects.

This inter-subject variability needs
to be better investigated in regards
to the buprenorphine spatial
fixation and the analgesic effect
for each patient.
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Conclusion

Take home message:

The joint estimation of the Haemodynamic Response Function and the
Neural activation signal from fMRI is possible in both rs-fMRI and task
fMRI as long as data is collected with a short TR.

Main contributions:

A multivariate semi-blind deconvolution approach.

Experimental validations on large cohort.

Validation on a pharmacological context.

New approach to minimize TV regularized problems.
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Perspectives

Future developments:

Estimation of shared spatial maps across subjects.

Investigate other possible regularization and constraints.

Future clinical investigations:

Expand the analysis of the Synchropioid cohort.

Apply HemoLearn to the EpiTEP project (Dr Bouilleret).
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Comparison to ICA
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Figure: Visual cortex
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Comparison to Wu et al., 2013
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Figure: Comparison to Wu et al., 2013 on a synthetic case:
(a) Components estimation – (b) Haemodynamic delays estimation comparison – (c) Voxelwise
semi-blind deconvolution example.
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Convergence rate comparison: theoretical comparison

Convergence rate comparison

Analysis formulation convergence rate

P(u(t))− P(u∗) ≤ ρ

2t
‖u(0) − u∗‖2

2, (9)

Synthesis formulation convergence rate

P(u(t))− P(u∗) ≤ 2ρ̃

t
‖u(0) − u∗‖2

2, (10)

Theorem (Lower bound for the ratio
‖AL‖2

2

‖A‖2
2

expectation)

Let A be a random matrix in Rm×k with i.i.d normal entries. The expectation
of ‖AL‖2

2/‖A‖2
2 is asymptotically lower bounded when k tends to ∞ by

E
[
‖AL‖2

2

‖A‖2
2

]
≥ 2k + 1

4π2
+ o(1)
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Convergence rate comparison: experimental comparison

Convergence rate comparison
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Figure: Evolution of E
[
‖AL‖2

2

‖A‖2
2

]
w.r.t

the dimension k for random matrices
A with i.i.d normal entries. In light
blue is the confidence interval [0.1,
0.9] computed with the quantiles.

So, we can expect that ρ̃/ρ scales as Θ(k2).
Which leads to ρ̃

2
� ρ in large enough dimension.

The analysis formulation should be much more efficient in terms of iterations
than the synthesis formulation.
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Derivative of prox-TV

Theorem (Jacobian of prox-TV)

Let x ∈ Rk and u = proxµ‖·‖TV (x), and denote by S the support of z = D̃u.
Then, the Jacobian Jx and Jµ of the prox-TV relative to x and µ can be
computed as

Jx(x , µ) = L:,S(L>:,SL:,S)−1L>:,S

and

Jµ(x , µ) = −L:,S(L>:,SL:,S)−1 sign(Du)S

Process summary

Forward pass: use the Taut-string algorithm (Θ(k) complexity in most
cases).

Back-propagation pass: use the automatic-differentiation along with the
analytic formulas of Jx and Jµ.
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