Efficient whole brain estimation of the haemodynamic response function for TV-regularized semi-blind deconvolution of neural activity in fMRI

Hamza Cherkaoui^{a,b}

^a Parietal - NeuroSpin - CEA, ^b Neuroimagerie pharmacologique - BioMaps - CEA

Paris-Sud University - Doctoral school n°575 - EOBE

Supervisors:

Philippe Ciuciu¹, Claire Leroy² and Thomas Moreau³

¹ NeuroSpin CEA,
 ² Service Hospitalier Frédéric Joliot CEA,

³ Centre Saclay Inria

Jury:

Dr. Julien Mairal

- Pr. Dimitri Van de Ville
- Pr. Charles Soussen
- Dr. Myriam Edjlali-Goujon
- Dr. Florence Forbes

1 Motivation

- 2 Multivariate semi-blind deconvolution model
- 3 Learning to solve 1D-TV regularized problems
- 4 Clinical investigation: the Synchropioid project
- 5 Conclusion

cea

1 Motivation

- 2 Multivariate semi-blind deconvolution model
- 3 Learning to solve 1D-TV regularized problems
- 4 Clinical investigation: the Synchropioid project

The need to better understand drugs' action

- The buprenorphine is an opioid class of analgesic molecule.
- Such medication induces a patient-dependent analgesic effect

Figure: Illustration of the different steps studied in the synchropioid protocol.

The interest of estimating the HRF

- The HRF models a complex cascade of events produced notably by the glial cells and the vascular system.
- Its shape (the haemodynamic delay) will be affected by drugs.
- Its estimation for the whole brain will characterize the effect of drugs in the brain.

The interest of estimating the HRF

- The HRF models a complex cascade of events produced notably by the glial cells and the vascular system.
- Its shape (the haemodynamic delay) will be affected by drugs.
- Its estimation for the whole brain will characterize the effect of drugs in the brain.

1 Motivation

2 Multivariate semi-blind deconvolution model

- 3 Learning to solve 1D-TV regularized problems
- 4 Clinical investigation: the Synchropioid project

cea

Main features

- Disentangle the neurovascular coupling from neural activity
- Paradigm-free approach
- Model the whole brain (multivariate model)

Main features

- Disentangle the neurovascular coupling from neural activity
- Paradigm-free approach
- Model the whole brain (multivariate model)

Illustration of the BOLD signal decomposition

Figure: Illustration of the low-rank multivariate BOLD signal model (Cherkaoui et al., under review, NeuroImage, 2021).

HRF modeling

Figure: Illustration the HRF modeling.

- We dilate the time axis of a reference HRF (Friston et al., 1998)
- The Time-To-Peak (TTP) and the Full Width at Half Max (FWHM) evolve jointly

Formalization of our model

$$\mathbf{Y} = \left(\sum_{m=1}^{M} \mathbf{\Theta}_{m}^{\top} \mathbf{v}_{\delta_{m}}\right) \div \left(\sum_{k=1}^{K} \mathbf{w}_{k}^{\top} \mathbf{u}_{k}\right) + \mathbf{E}$$
(1)

Parameter estimation

$$\underset{(\boldsymbol{W},\boldsymbol{U},\boldsymbol{\delta})}{\operatorname{arg\,min}} \frac{1}{2} \left\| \boldsymbol{Y} - \left(\sum_{m=1}^{M} \boldsymbol{\Theta}_{m}^{\top} \boldsymbol{v}_{\delta_{m}} \right) \\ * \left(\sum_{k=1}^{K} \boldsymbol{w}_{k}^{\top} \boldsymbol{u}_{k} \right) \right\|_{F}^{2} + \lambda \sum_{k=1}^{K} \| \nabla \boldsymbol{u}_{k} \|_{1}$$
subject to $\forall k, \| \boldsymbol{w}_{k} \|_{1} = 10, \quad \forall j, w_{kj} \ge 0, \quad \forall m, \delta_{m} \in [0.5, 2]$
with $\lambda = \lambda_{f} \lambda_{\max}$ such that $\lambda_{f} \in [0, 1]$
(2)

Alternated minimization strategy:

- Estimation of u_k : TV regularization Proximal Gradient Descent (PGD)
- Estimation of w_k: projected gradient descent
- Estimation of δ_m : projected gradient descent

Preprocessing and acquisition parameters:

- 1 motor task-fMRI 3 min 34 s acquisition drawn at random from the Human Connectome Project (HCP) dataset (Van Essen et al., 2013).
- temporal resolution: TR = 0.753 s.
- classical preprocessing done with fmriprep.

Decomposition parameters:

- K = 30 (number of spatio-temporal components)
- M = 96 (number of regions based on the 'Harvard-Oxford' parcellation, Desikan et al., 2006)
- $\lambda_f = 0.8$ (TV regularization parameter for the temporal components)

Single subject illustration (task-fMRI)

Figure: (a) *right motor cortex* spatial map – (b) Estimated HRF (for those voxels) – (c) Estimated neural signal (for the selected voxels)

Remarks

The multivariate modeling allows to recover:

- coherent neural activation signals (w.r.t. the experimental paradigm).
- well known functional networks.

Preprocessing and acquisition parameters:

- 1 rs-fMRI 6min acquisition drawn at random from the UK Bio Bank (UKBB) dataset (Sudlow et al., 2015).
- temporal resolution: TR = 0.735 s.
- classical preprocessing done with fmriprep.

Decomposition parameters:

- *K* = 20
- M = 96 ('Harvard-Oxford' parcellation)
- $\lambda_f = 0.8$

Single subject illustration (rs-fMRI)

Cea

Neural activation estimation:

Left motor cortex:

W14

U14

Figure: Component n°14 (w_{14} , u_{14}) - *left* motor cortex

Figure: Component n°17 (w_{17} , u_{17}) - Visual cortex

Single subject illustration (rs-fMRI)

Figure: Spatial distribution of the HRF parameter δ

Cea

fMRI temporal resolution limitation of our method

Temporal resolution limitation:

Time-To-Peak map:

Figure: Spatial distribution of the TTPs.

- Time-To-Peak characteristic: standard deviation = 0.43 s, max-min = 2.24 s.
- \blacksquare The model needs a temporal resolution about one second: Repetition Time (TR) \leq 1.0 s.

Summary of the single subject decomposition:

Neural activity estimation

- The spatial maps feature symmetric sparse maps with compact activated regions.
- We recover well known functional networks: motor network, visual network, auditory network, Default Mode Network (DMN), Control Executive Network (CEN), etc.

Neurovascular coupling estimation

- We recover a **smooth** spatial neurovascular coupling map.
- The visual cortex features fast haemodynamic delays (Taylor et al., 2018).

Experimental validation on the UKBB dataset

Goal:

• Characterization of patients with an history of stroke.

Preprocessing and acquisition parameters:

- 48 rs-fMRI 6min acquisitions drawn at random from the UKBB dataset separated in two groups:
 - subjects who suffered from a stroke in the past
 - healthy subjects.

Decomposition parameters:

- *K* = 20
- M = 96 ('Harvard-Oxford' parcellation)
- $\lambda_f \in \{0.001, 0.22, 0.45, 0.67, 0.9\}$

Quantification of the asymmetry:

$$\mathsf{IHD}(\boldsymbol{\delta}^{\mathfrak{s}}_{\mathrm{R}},\boldsymbol{\delta}^{\mathfrak{s}}_{\mathrm{L}}) = \frac{\|\boldsymbol{\delta}^{\mathfrak{s}}_{\mathrm{L}} - \boldsymbol{\delta}^{\mathfrak{s}}_{\mathrm{R}}\|_2}{\|\boldsymbol{\delta}^{\mathfrak{s}}_{\mathrm{L}+\mathrm{R}}\|_2}, \quad \forall s = 1, \dots, 24.$$

Experimental validation on the UKBB dataset

Distribution of the neurovascular asymmetry:

Figure: IHD distribution for each group.

- The spatial distribution of the HRF parameters ((δ_m)_m) is more asymmetric for subjects who suffered from a stroke in the past.
- We observe an inter-subject variability within this group.

Goal:

 Classify each subject to its corresponding age group using his haemodynamic estimates.

Preprocessing and acquisition parameters:

 486 rs-fMRI 6min acquisitions drawn at random from the UKBB dataset separated in two age-groups.

Decomposition parameters:

- *K* = 20
- M = 96 ('Harvard-Oxford' parcellation)
- $\lambda_f \in \{0.001, 0.22, 0.45, 0.67, 0.9\}$

Classification score:

Figure: Classification score (best score: 0.74).

- The HRF parameters ((δ_m)_m) and the HRF shape ((ν_{δm})_m) predict the age group.
- Our model captures the degradation of the neurovascular coupling induced by aging (West et al., 2020).

Running times

- In average one decomposition corresponds to: 500 time-frames and 8500 voxels (after a spatial sub-sampling to increase the signal-to-noise ratio).
- For a single subject decomposition time: 30 s on 1 CPU.
- For the UKBB dataset decomposition time for the age experiment: approximately 12 hours on 40 CPUs.

Remark

I made an effort to provide fast algorithms and an efficient Python implementation.

https://github.com/hcherkaoui/hemolearn

1 Motivation

2 Multivariate semi-blind deconvolution model

3 Learning to solve 1D-TV regularized problems

4 Clinical investigation: the Synchropioid project

Problem formulation

cea

Minimization of

$$\min_{\boldsymbol{u}\in\mathbb{R}^{T}}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{v}\ast\boldsymbol{u}\|_{2}^{2}+\lambda\|\boldsymbol{u}\|_{\mathrm{TV}}.$$
(3)

Related usage: Estimation of the neural activation signal u from the BOLD signal y with a fixed HRF v.

Figure: 1D fMRI signal deconvolution performed using TV regularization.

Generalization of the optimization problem:

Original problem

$$\min_{\boldsymbol{u}\in\mathbb{R}^{T}}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{v}\ast\boldsymbol{u}\|_{2}^{2}+\lambda\|\boldsymbol{u}\|_{\mathrm{TV}}.$$
(4)

We replace v * u by Au to consider a more general case.

Minimization of

$$\min_{\boldsymbol{u}\in\mathbb{R}^{T}}\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{A}\boldsymbol{u}\|_{2}^{2}+\lambda\|\boldsymbol{u}\|_{\mathrm{TV}}.$$
(5)

Equivalent re-formulation of the problem in 1D

Analysis formulation

Synthesis formulation

$$\min_{\boldsymbol{u} \in \mathbb{R}^{T}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{u}\|_{2}^{2} + \lambda \underbrace{\|\boldsymbol{D}\boldsymbol{u}\|_{1}}_{\|\boldsymbol{u}\|_{\mathrm{TV}}} \quad \min_{\boldsymbol{z} \in \mathbb{R}^{T}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{L}\boldsymbol{z}\|_{2}^{2} + \lambda \|\boldsymbol{z}\|_{1}$$

with
$$\boldsymbol{u} = \boldsymbol{L}\boldsymbol{z}$$
 and $\boldsymbol{L} = \boldsymbol{D}^{-1}$

Which formulation to choose:

We demonstrated, in Cherkaoui et al., NeurIPS, 2020, that the convergence rate of Analysis is much faster than the Synthesis.

Proximal Gradient Descent (PGD):

$$\boldsymbol{u}^{t+1} = \operatorname{prox}_{\mu \parallel \cdot \parallel_{\mathcal{T}V}} (\boldsymbol{u}^t - \mu \boldsymbol{A}^\top (\boldsymbol{A} \boldsymbol{u}^t - \boldsymbol{y})).$$
 (6)

Equivalent to a Recurrent Neural Network:

$$\boldsymbol{u}^{t+1} = \operatorname{prox}_{\mu \parallel \cdot \parallel_{\mathcal{T}V}} (\boldsymbol{W}_{\boldsymbol{u}} \boldsymbol{u}^{t} + \boldsymbol{W}_{\boldsymbol{y}} \boldsymbol{y}). \tag{7}$$

(a) Proximal Gradient Descent (PGD) - Recurrent Neural Network

Unrolling the analysis formulation

How to unroll proximal gradient descent?

How to compute the $\mathrm{prox}_{\mu\|\cdot\|_{\mathcal{T}V}}$ for each layer in a differential way?

Calculation of the proximal operator

Two approaches for differential computations of prox TV:

$$\operatorname{prox}_{\mu\|\cdot\|_{TV}}(x) = \arg\min_{u \in \mathbb{R}^T} \frac{1}{2} \|x - u\|_2^2 + \mu \|u\|_{TV}.$$
(8)

Approximate the operator

- Use the equivalent synthesis formulation of Eq. (8) and a LISTA network (Gregor and Le Cun, 2010) to approximate the operator.
- Use the back-propagation to compute the gradient of the prox_{µ∥·∥_{TV}}(·) approximation.

Compute numerically the operator

- Solve the proximal operator numerically (Condat, 2013).
- Use the formula provided by Cherkaoui et al., NeurIPS, 2020 to compute the gradient of prox_{µ∥·∥TV}(·).

Experimental validation on real fMRI data

Cea

Preprocessing, acquisition and decomposition parameters:

- 1 rs-fMRI acquisition drawn at random from the UKBB dataset.
- We retain only 8000 cropped time-series of 3 minute 3 seconds.
- We fix the HRF v and estimate the neural activity signal u for each voxel.

Performance comparison

Figure: Performance comparison: Our analytic prox-TV derivative method outperforms the PGD in the analysis formulation.

31 / 41

cea

1 Motivation

- 2 Multivariate semi-blind deconvolution model
- 3 Learning to solve 1D-TV regularized problems
- 4 Clinical investigation: the Synchropioid project

cea

The Synchropioid cohort

- Opioid-naive healthy volunteers: 30 subjects under placebo; 30 subjects under analgesic dose of buprenorphine.
- 90 min of [¹¹C]-buprenorphine PET imaging acquisition: localize the distribution of buprenorphine in the brain (partial agonist of μ-opioid receptors).
- 2 rs-fMRI sessions of 14 min: characterize the effect on the neurovascular coupling simultaneously to PET imaging.

Figure: Illustration of the imaging protocol of the Synchropioid project.

Preprocessing and acquisition parameters:

- 2 rs-fMRI 14 min acquisition for each (2 volunteers on placebo condition and 2 volunteers on analgesic dose of buprenorphine).
- temporal resolution: TR = 0.8 s.
- classical preprocessing done with fmriprep.

Decomposition parameters:

- *K* = 20
- M = 122 ('BASC' parcellation, Bellec et al., 2013)
- $\lambda_f = 0.1$

Neurovascular coupling estimation

Figure: Maps of HRF dilation parameters δ for rs-fMRI N°1 (Adriaens et al., 2014).

Buprenorphine spatial distribution

Cea

Figure: Spatial distribution of [¹¹C]buprenorphine uptake (SUVr maps).

- The spatial distribution of [¹¹C]buprenorphine is concordant with the known distribution of μ-opioid receptors (highest concentration in the putamen and the insula), Zubieta et al., 2000 and Greenwald et al., 2003.
- The highest [¹¹C]buprenorphine uptakes are concordant with the slowest haemodynamic delays (Cherkaoui et al., submitted to OHBM, 2021).

Two points analysis

Variability over time across subjects:

Figure: Evolution of the haemodynamic responses δ in each participant.

- We capture the effect of the buprenorphine on the neurovascular coupling.
- We observe a significant variability across time and subjects.
- This inter-subject variability needs to be better investigated in regards to the buprenorphine spatial fixation and the analgesic effect for each patient.

cea

1 Motivation

- 2 Multivariate semi-blind deconvolution model
- 3 Learning to solve 1D-TV regularized problems
- 4 Clinical investigation: the Synchropioid project

Take home message:

The joint estimation of the Haemodynamic Response Function and the Neural activation signal from fMRI is possible in both rs-fMRI and task fMRI as long as data is collected with a short TR.

Main contributions:

- A multivariate semi-blind deconvolution approach.
- Experimental validations on large cohort.
- Validation on a pharmacological context.
- New approach to minimize TV regularized problems.

Future developments:

- Estimation of shared spatial maps across subjects.
- Investigate other possible regularization and constraints.

Future clinical investigations:

- Expand the analysis of the Synchropioid cohort.
- Apply HemoLearn to the EpiTEP project (Dr Bouilleret).

Publications

Cea

Thank you for listening !

First author publications

- **Cherkaoui, H.** and Moreau, T. and Ciuciu, P. and Fernandez, B. and Bottlaender, M. and Tournier, N. and Leroy, C., *Characterization of the haemodynamic response function after a buprenorphine challenge study in Human healthy volunteer*, submitted to **OHBM**, 2021.
- Cherkaoui, H. and Moreau, T. and Halimi, A. and Leroy, C. and Ciuciu, P., Multivariate semi-blind deconvolution of fMRI time series, under review, NeuroImage, 2021.
- Cherkaoui, H. and Sulam, J. and Moreau, T., Learning to solve TV regularised problems with unrolled algorithms, NeurIPS, 2020.
- **Cherkaoui, H.** and Moreau, T. and Halimi, A. and Ciuciu, P., *Sparsity-based blind deconvolution of neural activation signal in fMRI*, **ICASSP**, 2019.
- Cherkaoui, H. and Moreau, T. and Halimi, A. and Ciuciu, P., fMRI BOLD signal decomposition using a multivariate low-rank model, EUSIPCO, 2019.
- Cherkaoui, H. and Gueddari, L. and Lazarus, C. and Grigis, A. and Poupon, F. and Vignaud, A. and Farrens, S. and Starck, J.-L.. and Ciuciu, P. Analysis vs synthesis-based regularization for combined compressed sensing and parallel MRI reconstruction at 7 tesla, EUSIPCO, 2018.

Comparison to ICA

ĊĽ

• *Left* motor cortex:

W13

W03 ICA

Figure: *left* motor cortex

y=-24

W16

Comparison to Wu et al., 2013

Figure: Comparison to Wu et al., 2013 on a synthetic case: (a) Components estimation – (b) Haemodynamic delays estimation comparison – (c) Voxelwise semi-blind deconvolution example.

Convergence rate comparison

Analysis formulation convergence rate

$$P(u^{(t)}) - P(u^*) \le \frac{\rho}{2t} \|u^{(0)} - u^*\|_2^2, \tag{9}$$

Synthesis formulation convergence rate

$$P(u^{(t)}) - P(u^*) \le \frac{2\widetilde{\rho}}{t} ||u^{(0)} - u^*||_2^2,$$
(10)

Theorem (Lower bound for the ratio $\frac{\|AL\|_2^2}{\|A\|_2^2}$ expectation)

Let A be a random matrix in $\mathbb{R}^{m \times k}$ with i.i.d normal entries. The expectation of $\|AL\|_2^2/\|A\|_2^2$ is asymptotically lower bounded when k tends to ∞ by

$$\mathbb{E}\left[rac{\|AL\|_2^2}{\|A\|_2^2}
ight] \geq rac{2k+1}{4\pi^2} + o(1)$$

Convergence rate comparison: experimental comparison

Convergence rate comparison

Figure: Evolution of $\mathbb{E}\left[\frac{\|AL\|_2^2}{\|A\|_2^2}\right]$ *w.r.t* the dimension *k* for random matrices *A* with *i.i.d* normal entries. In light blue is the confidence interval [0.1, 0.9] computed with the quantiles.

So, we can expect that $\tilde{\rho}/\rho$ scales as $\Theta(k^2)$. Which leads to $\frac{\tilde{\rho}}{2} \gg \rho$ in large enough dimension.

The analysis formulation should be much more efficient in terms of iterations than the synthesis formulation.

Theorem (Jacobian of prox-TV)

Let $x \in \mathbb{R}^k$ and $u = prox_{\mu \| \cdot \|_{TV}}(x)$, and denote by S the support of z = Du. Then, the Jacobian J_x and J_μ of the prox-TV relative to x and μ can be computed as

$$J_{x}(x,\mu) = L_{:,S}(L_{:,S}^{\top}L_{:,S})^{-1}L_{:,S}^{\top}$$

and
$$J_{\mu}(x,\mu) = -L_{:,S}(L_{:,S}^{\top}L_{:,S})^{-1}\operatorname{sign}(Du)_{S}$$

Process summary

- Forward pass: use the Taut-string algorithm (Θ(k) complexity in most cases).
- Back-propagation pass: use the automatic-differentiation along with the analytic formulas of J_x and J_{μ} .