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Motivation

Deconvolution problem in fMRI
The commun model for the BOLD signal (the fMRI data) is:

x = h ∗ u + ε (1)

with x the BOLD signal, h the haemodynamic response function (HRF)
and u the neural activity.

If we fix the HRF, we can recover the neural activation signal from the
BOLD signal.
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Figure: Deconvolution of the BOLD signal with a TV regularization.
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Motivation

Total Variation (TV) regularization
TV promotes piece-wise constant estimates by penalizing the `1-norm of
the first order derivative of the estimated signal
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Figure: Signal denoising performed with a TV regularization.

Domain of application: machine learning, neuro-imaging, image
restoration, etc
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Formulation of the problem

Analysis formulation of the TV problem

Let x ∈ Rm the observed signal,
Let ε ∈ Rm be an additive Gaussian noise,
Let u ∈ Rk the piece-wise constant signal,
Let A ∈ Rm×k being some observation matrix,
Let λ ∈ R+ the regularization parameter.

x = Au + ε (2)

Primal analysis TV problem

min
u∈Rk

Px(u) =
1

2
‖x − Au‖2

2 + λ‖u‖TV , (3)

where ‖u‖TV = ‖Du‖1, and D =




−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −1 1



∈ Rk−1×k
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Solving iteratively TV-regularized problems

Primal first order method approaches

u(t+1) = proxλ
ρ
‖·‖TV

(
u(t) − 1

ρ
A>(Au(t) − x)

)
(4)

where ρ = ‖A‖2
2 and the prox-TV is defined as

proxµ‖·‖TV (y) = arg min
u∈Rk

Fy (u) =
1

2
‖y − u‖2

2 + µ‖u‖TV . (5)
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Solving iteratively TV-regularized problems

Dual first order method approaches

We can reformulate this analysis-primal problem to the dual:

Dual analysis TV problem

min
v∈Rk

1

2
‖A†>D>v‖2

2 − v>DA†x (6)

s.t. ‖v‖∞ ≤ λ (7)
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Solving iteratively TV-regularized problems

Dual first order method approaches

v (t+1) = Proj{‖v‖∞≤λ}

(
v (t) − 1

ρ
Ψ>A (ΨAv

(t) − x)

)
(8)

(9)

With ΨA = A†
>
D> and ρ = ‖ΨA‖2

2

Note: alternatively, we can use a primal-dual descent algorithm (such as
ADMM or the Vu-Condat splitting algorithm).
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Solving iteratively TV-regularized problems

Synthesis (equivalent) formulation of the TV problem
Let z ∈ Rk be the sparse source signal s.t. Lz = u.

Primal synthesis TV problem

min
z∈Rk

Sx(z) =
1

2
‖x − ALz‖2

2 + λ‖Rz‖1. (10)

where R =




0 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1



∈ Rk×k and L =




1 0 . . . 0

1 1
. . .

...
...

. . .
. . . 0

1 . . . 1 1



∈ Rk×k

We have ∀(z , u) ∈ (Rk ,Rk) s.t. u = Lz , we have Sx(z) = Px(u).
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Solving iteratively TV-regularized problems

Synthesis (equivalent) formulation of the TV problem

ISTA with a pseudo soft-thresholding operator [Tibshirani, 1996]

z(t+1) = ST

((
z(t) − 1

ρ
L>A>(ALz(t) − x)

)
,
λ

ρ

)
(11)

(12)

with:

ST (x) =

{
xi , if i = 1,

(|xi | − λ)+, otherwise.

where

x+ =

{
x , if x > 0,

0, otherwise.
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Solving iteratively TV-regularized problems

Convergence rate comparison

Analysis formulation convergence rate

P(u(t))− P(u∗) ≤ ρ

2t
‖u(0) − u∗‖2

2, (13)

Synthesis formulation convergence rate

P(u(t))− P(u∗) ≤ 2ρ̃

t
‖u(0) − u∗‖2

2, (14)

Theorem (Lower bound for the ratio
‖AL‖2

2

‖A‖2
2
expectation)

Let A be a random matrix in Rm×k with i.i.d normal entries. The
expectation of ‖AL‖2

2/‖A‖2
2 is asymptotically lower bounded when k tends

to ∞ by

E
[‖AL‖2

2

‖A‖2
2

]
≥ 2k + 1

4π2
+ o(1)
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Solving iteratively TV-regularized problems

Convergence rate comparison

101 102 103

Dimension k

101

103

105

‖A
L
‖2 2
/‖
A
‖2 2

Mean E
[
‖AL‖22
‖A‖22

]
Proposition 2.1 Conjecture 2.2

Figure: Evolution of E
[
‖AL‖2

2

‖A‖2
2

]
w.r.t

the dimension k for random matrices
A with i.i.d normal entries. In light
blue is the confidence interval [0.1,
0.9] computed with the quantiles.

So, we can expect that ρ̃/ρ scales as Θ(k2).
Which leads to ρ̃

2 � ρ in large enough dimension.

The analysis formulation should be much more efficient in terms of
iterations than the synthesis formulation.
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Solving iteratively TV-regularized problems
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Figure: Performance comparison λ = 0.1λmax between the iterative solver for
the synthesis and analysis formulation with the corresponding primal, dual or
primal-dual re-parametrization.
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Solving iteratively TV-regularized problems
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Figure: Performance comparison λ = 0.8λmax between the iterative solver for
the synthesis and analysis formulation with the corresponding primal, dual or
primal-dual re-parametrization.
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Unrolling iterative algorithms

Principle of unrolling
Consider the following generic problem [Gregor and Le Cun, 2010] :

arg min
u∈Rk

L(x , u) =
1

2
‖x − Bu‖2

2 + λg(u) , (15)

If we defined:

W
(t)
x =

1

ρ
B>, W

(t)
u = (Id−1

ρ
B>B) , µ(t) =

λ

ρ
, with ρ = ‖B‖2

2 .

(16)
The recursive equation to minimize Eq:15 reads:

u(0) = B†x ; u(t) = proxµ(t)g (W
(t)
x x + W

(t)
u u(t−1)) . (17)
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Unrolling iterative algorithms

Principle of unrolling

u(0) = B†x ; u(t) = proxµ(t)g (W
(t)
x x + W

(t)
u u(t−1)) . (18)

Wxx proxµg u∗

Wu

Figure: PGD - Recurrent Neural Network
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Unrolling iterative algorithms
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Figure: LPGD - Unfolded network for Learned PGD with T = 3

Neural network training

Let Θ(T ) be the weights of the T first layers of the neural network,
Let ΦΘ(T ) be the neural network defined with those weights,
Let (xi )

N
1 be the training samples.

To train the neural network, we minimize:

min
Θ(T )

1

N

N∑

i=1

L(xi , φΘ(T )(xi )) . (19)
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Derivative of prox-TV

Back-propagate through the prox-TV step

To learn the weights of the defined neural network, we need to
back-propagate the error.

Let h = W
(t)
x x + W

(t)
u φΘ(t−1)(x) and u = proxµ(t)‖·‖TV (h)

The chain rule gives use:

∂L
∂h

= Jx(h, µ(t))>
∂L
∂u

, and
∂L
∂µ(t)

= Jµ(h, µ(t))>
∂L
∂u

, (20)

We need to compute Jx(h, µ) ∈ Rk×k and Jµ(h, µ) ∈ Rk×1
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Derivative of prox-TV

Theorem (Jacobian of prox-TV)

Let x ∈ Rk and u = proxµ‖·‖TV (x), and denote by S the support of

z = D̃u. Then, the Jacobian Jx and Jµ of the prox-TV relative to x and µ
can be computed as

Jx(x , µ) = L:,S(L>:,SL:,S)−1L>:,S

and

Jµ(x , µ) = −L:,S(L>:,SL:,S)−1 sign(Du)S
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Derivative of prox-TV

Remarks on the Jacobians Jx and Jµ

They invoked a matrix inversion, which have a Θ(k3) complexity

Those inversions need to be computed at every iterations... but only
for the training step!

Those Jacobians are zero outside the support of z : the smaller the
support of z the lesser we ’learn’

Process summary

Forward pass: use the Taut-string algorithm (Θ(k) complexity in
most cases).

Back-propagation pass: use the automatic-differentiation along with
the analytic formulas of Jx and Jµ.
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Unrolled prox-TV

Similary, we can defined an inner neural network to solve:

z∗ = arg min
z∈Rk

1

2
‖h − Lz‖2

2 + µ‖Rz‖1 (21)

Process summary

Forward pass: use the forward inner neural network.

Back-propagation pass: use the automatic-differentiation through the
inner neural network.
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Simulation

Performance investigation
We generate n = 2000 times series,
Such as (ui )

n
i=1 ∈ Rn×k with k = 8

Each ui has a support of |S | = 2 non-zero coefficients,
Let A ∈ Rm×k as a Gaussian matrix with m = 5,
We add Gaussian noise to measurements xi = Aui with a SNR of 1.0.
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Figure: Performance comparison for different regularisation levels (left) λ = 0.1,
(right) λ = 0.8.
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Simulation

Inexact Prox-TV error investigation

(Same experimental configuration than previously).
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Figure: Proximal operator error comparison for different regularisation levels
(left) λ = 0.1, (right) λ = 0.8.
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fMRI data deconvolution

Performance investigation
We used UK Bio Bank (UKBB) dataset,
We retain only 8000 time-series of 250 time-frames (3 minute 03 seconds),
We fix the HRF h and estimate the neural activity signal u for each voxels.
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Figure: Performance comparison λ = 0.1λmax between LPGD-Taut and iterative
PGD for the analysis formulation for the HRF deconvolution problem with fMRI
data.
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Conclusion

Take-home message:

The analysis formulation can be solved more efficiently with PGD
than the synthesis formulation

Unrolling the algorithm in the analysis allows to learn more efficient
algorithm than unrolling in the synthesis

We have a control over the error in the case of the inexact proximal
operator, but in practice the obtained Tin can be too ’high’.

We will extend this work to the 2D case
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Questions?
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