## Learning to solve TV regularised problems with unrolled algorithms

Hamza Cherkaoui, Jeremias Sulam, Thomas Moreau<br>CEA-Neurospin/SHFJ - INRIA-Saclay — Johns Hopkins University hamza.cherkaoui@inria.fr

July 7, 2020

## Overview

(1) Motivation
(2) Total Variation

- Formulation of the problem
- Solving iteratively TV-regularized problems
- Unrolling iterative algorithms
(3) Back-propagating through TV proximal operator
- Derivative of prox-TV
- Unrolled prox-TV
(4) Experiments
- Simulation
- Inexact prox-TV
- fMRI data deconvolution
(5) Conclusion


## Motivation

## Deconvolution problem in fMRI

The commun model for the BOLD signal (the fMRI data) is:

$$
\begin{equation*}
x=h * u+\epsilon \tag{1}
\end{equation*}
$$

with $x$ the BOLD signal, $h$ the haemodynamic response function (HRF) and $u$ the neural activity.

If we fix the HRF, we can recover the neural activation signal from the BOLD signal.


Figure: Deconvolution of the BOLD signal with a TV regularization.

## Motivation

## Total Variation (TV) regularization

TV promotes piece-wise constant estimates by penalizing the $\ell_{1}$-norm of the first order derivative of the estimated signal


Figure: Signal denoising performed with a TV regularization.

Domain of application: machine learning, neuro-imaging, image restoration, etc

## Formulation of the problem

## Analysis formulation of the TV problem

Let $x \in \mathbb{R}^{m}$ the observed signal,
Let $\epsilon \in \mathbb{R}^{m}$ be an additive Gaussian noise,
Let $u \in \mathbb{R}^{k}$ the piece-wise constant signal,
Let $A \in \mathbb{R}^{m \times k}$ being some observation matrix,
Let $\lambda \in \mathbb{R}^{+}$the regularization parameter.

$$
\begin{equation*}
x=A u+\epsilon \tag{2}
\end{equation*}
$$

Primal analysis TV problem

$$
\begin{equation*}
\min _{u \in \mathbb{R}^{k}} P_{x}(u)=\frac{1}{2}\|x-A u\|_{2}^{2}+\lambda\|u\|_{T V}, \tag{3}
\end{equation*}
$$

where $\|u\|_{T V}=\|D u\|_{1}$, and $D=\left[\begin{array}{ccccc}-1 & 1 & 0 & \ldots & 0 \\ 0 & -1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1\end{array}\right] \in \mathbb{R}^{k-1 \times k}$

## Solving iteratively TV-regularized problems

## Primal first order method approaches

$$
\begin{equation*}
u^{(t+1)}=\operatorname{prox}_{\frac{\lambda}{\rho}\|\cdot\|_{T V}}\left(u^{(t)}-\frac{1}{\rho} A^{\top}\left(A u^{(t)}-x\right)\right) \tag{4}
\end{equation*}
$$

where $\rho=\|A\|_{2}^{2}$ and the prox-TV is defined as

$$
\begin{equation*}
\operatorname{prox}_{\mu\|\cdot\|_{T V}}(y)=\arg \min _{u \in \mathbb{R}^{k}} F_{y}(u)=\frac{1}{2}\|y-u\|_{2}^{2}+\mu\|u\|_{T V} . \tag{5}
\end{equation*}
$$

## Solving iteratively TV-regularized problems

## Dual first order method approaches

We can reformulate this analysis-primal problem to the dual:

## Dual analysis TV problem

$$
\begin{array}{ll}
\min _{v \in \mathbb{R}^{k}} & \frac{1}{2}\left\|A^{\dagger^{\top}} D^{\top} v\right\|_{2}^{2}-v^{\top} D A^{\dagger} x \\
\text { s.t. } & \|v\|_{\infty} \leq \lambda \tag{7}
\end{array}
$$

## Solving iteratively TV-regularized problems

## Dual first order method approaches

$$
\begin{equation*}
v^{(t+1)}=\operatorname{Proj}_{\left\{\|v\|_{\infty} \leq \lambda\right\}}\left(v^{(t)}-\frac{1}{\rho} \Psi_{A}^{\top}\left(\Psi_{A} v^{(t)}-x\right)\right) \tag{8}
\end{equation*}
$$

With $\Psi_{A}=A^{\dagger^{\top}} D^{\top}$ and $\rho=\left\|\Psi_{A}\right\|_{2}^{2}$
Note: alternatively, we can use a primal-dual descent algorithm (such as ADMM or the Vu-Condat splitting algorithm).

## Solving iteratively TV-regularized problems

Synthesis (equivalent) formulation of the TV problem Let $z \in \mathbb{R}^{k}$ be the sparse source signal s.t. $L z=u$.

## Primal synthesis TV problem

$$
\begin{equation*}
\min _{z \in \mathbb{R}^{k}} S_{x}(z)=\frac{1}{2}\|x-A L z\|_{2}^{2}+\lambda\|R z\|_{1} . \tag{10}
\end{equation*}
$$

where $R=\left[\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \cdots & \ddots & 0 \\ 0 & \cdots & 0 & 1\end{array}\right] \in \mathbb{R}^{k \times k}$ and $L=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 1 & 1 & \ddots & \vdots \\ \vdots & \cdots & \ddots & 0 \\ 1 & \cdots & 1 & 1\end{array}\right] \in \mathbb{R}^{k \times k}$
We have $\forall(z, u) \in\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ s.t. $u=L z$, we have $S_{x}(z)=P_{x}(u)$.

## Solving iteratively TV-regularized problems

Synthesis (equivalent) formulation of the TV problem
ISTA with a pseudo soft-thresholding operator [Tibshirani, 1996]

$$
\begin{equation*}
z^{(t+1)}=\mathrm{ST}\left(\left(z^{(t)}-\frac{1}{\rho} L^{\top} A^{\top}\left(A L z^{(t)}-x\right)\right), \frac{\lambda}{\rho}\right) \tag{11}
\end{equation*}
$$

with:

$$
\mathrm{ST}(x)= \begin{cases}x_{i}, & \text { if } i=1 \\ \left(\left|x_{i}\right|-\lambda\right)_{+}, & \text {otherwise }\end{cases}
$$

where

$$
x_{+}= \begin{cases}x, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

## Solving iteratively TV-regularized problems

Convergence rate comparison
Analysis formulation convergence rate

$$
\begin{equation*}
P\left(u^{(t)}\right)-P\left(u^{*}\right) \leq \frac{\rho}{2 t}\left\|u^{(0)}-u^{*}\right\|_{2}^{2} \tag{13}
\end{equation*}
$$

Synthesis formulation convergence rate

$$
\begin{equation*}
P\left(u^{(t)}\right)-P\left(u^{*}\right) \leq \frac{2 \widetilde{\rho}}{t}\left\|u^{(0)}-u^{*}\right\|_{2}^{2} \tag{14}
\end{equation*}
$$

## Theorem (Lower bound for the ratio $\frac{\|A L\|_{2}^{2}}{\|A\|_{2}^{2}}$ expectation)

Let $A$ be a random matrix in $\mathbb{R}^{m \times k}$ with i.i.d normal entries. The expectation of $\|A L\|_{2}^{2} /\|A\|_{2}^{2}$ is asymptotically lower bounded when $k$ tends to $\infty$ by

$$
\mathbb{E}\left[\frac{\|A L\|_{2}^{2}}{\|A\|_{2}^{2}}\right] \geq \frac{2 k+1}{4 \pi^{2}}+o(1)
$$

## Solving iteratively TV-regularized problems

## Convergence rate comparison

$\square$ Mean $\mathbb{E}\left[\frac{\|A L\|_{2}^{2}}{\|A\|_{2}^{2}}\right]$ - Proposition 2.1 - = Conjecture 2.2


Figure: Evolution of $\mathbb{E}\left[\frac{\|A L\|_{2}^{2}}{\|A\|_{2}^{2}}\right]$ w.r.t the dimension $k$ for random matrices $A$ with i.i.d normal entries. In light blue is the confidence interval [0.1, 0.9 ] computed with the quantiles.

So, we can expect that $\widetilde{\rho} / \rho$ scales as $\Theta\left(k^{2}\right)$.
Which leads to $\frac{\tilde{\rho}}{2} \gg \rho$ in large enough dimension.
The analysis formulation should be much more efficient in terms of iterations than the synthesis formulation.

## Solving iteratively TV-regularized problems



Figure: Performance comparison $\lambda=0.1 \lambda_{\max }$ between the iterative solver for the synthesis and analysis formulation with the corresponding primal, dual or primal-dual re-parametrization.

## Solving iteratively TV-regularized problems



Figure: Performance comparison $\lambda=0.8 \lambda_{\text {max }}$ between the iterative solver for the synthesis and analysis formulation with the corresponding primal, dual or primal-dual re-parametrization.

## Unrolling iterative algorithms

## Principle of unrolling

Consider the following generic problem [Gregor and Le Cun, 2010]:

$$
\begin{equation*}
\underset{u \in \mathbb{R}^{k}}{\arg \min } \mathcal{L}(x, u)=\frac{1}{2}\|x-B u\|_{2}^{2}+\lambda g(u) \tag{15}
\end{equation*}
$$

If we defined:

$$
\begin{equation*}
W_{x}^{(t)}=\frac{1}{\rho} B^{\top}, \quad W_{u}^{(t)}=\left(\operatorname{ld}-\frac{1}{\rho} B^{\top} B\right), \quad \mu^{(t)}=\frac{\lambda}{\rho}, \quad \text { with } \rho=\|B\|_{2}^{2} . \tag{16}
\end{equation*}
$$

The recursive equation to minimize Eq:15 reads:

$$
\begin{equation*}
u^{(0)}=B^{\dagger} x ; \quad u^{(t)}=\operatorname{prox}_{\mu^{(t)} g}\left(W_{x}^{(t)} x+W_{u}^{(t)} u^{(t-1)}\right) \tag{17}
\end{equation*}
$$

## Unrolling iterative algorithms

## Principle of unrolling

$$
\begin{gathered}
u^{(0)}=B^{\dagger} x ; \quad u^{(t)}=\operatorname{prox}_{\mu^{(t)} g}\left(W_{x}^{(t)} x+W_{u}^{(t)} u^{(t-1)}\right) . \\
x \rightarrow W_{x} \rightarrow \xrightarrow{\operatorname{prox}_{\mu g}} u^{*}
\end{gathered}
$$

Figure: PGD - Recurrent Neural Network

## Unrolling iterative algorithms



Figure: LPGD - Unfolded network for Learned PGD with $T=3$

## Neural network training

Let $\Theta^{(T)}$ be the weights of the $T$ first layers of the neural network, Let $\Phi_{\Theta^{(T)}}$ be the neural network defined with those weights, Let $\left(x_{i}\right)_{1}^{N}$ be the training samples.

To train the neural network, we minimize:

$$
\begin{equation*}
\min _{\Theta^{(T)}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(x_{i}, \phi_{\Theta^{(T)}}\left(x_{i}\right)\right) \tag{19}
\end{equation*}
$$

## Derivative of prox-TV

## Back-propagate through the prox-TV step

To learn the weights of the defined neural network, we need to back-propagate the error.
Let $h=W_{x}^{(t)} x+W_{u}^{(t)} \phi_{\Theta^{(t-1)}}(x)$ and $u=\operatorname{prox}_{\mu^{(t)}\|\cdot\|_{T V}}(h)$
The chain rule gives use:

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial h}=J_{x}\left(h, \mu^{(t)}\right)^{\top} \frac{\partial \mathcal{L}}{\partial u}, \quad \text { and } \quad \frac{\partial \mathcal{L}}{\partial \mu^{(t)}}=J_{\mu}\left(h, \mu^{(t)}\right)^{\top} \frac{\partial \mathcal{L}}{\partial u} \tag{20}
\end{equation*}
$$

We need to compute $J_{x}(h, \mu) \in \mathbb{R}^{k \times k}$ and $J_{\mu}(h, \mu) \in \mathbb{R}^{k \times 1}$

## Derivative of prox-TV

## Theorem (Jacobian of prox-TV)

Let $x \in \mathbb{R}^{k}$ and $u=\operatorname{prox}_{\mu\|\cdot\|_{T V}}(x)$, and denote by $\mathcal{S}$ the support of $z=\widetilde{D} u$. Then, the Jacobian $J_{x}$ and $J_{\mu}$ of the prox-TV relative to $x$ and $\mu$ can be computed as

$$
\begin{aligned}
& J_{x}(x, \mu)=L_{:, \mathcal{S}}\left(L_{:, \mathcal{S}}^{\top} L_{:, \mathcal{S}}\right)^{-1} L_{:, \mathcal{S}}^{\top} \\
& \quad \text { and } \\
& J_{\mu}(x, \mu)=-L_{:, \mathcal{S}}\left(L_{:, \mathcal{S}}^{\top} L_{:, \mathcal{S}}\right)^{-1} \operatorname{sign}(D u)_{\mathcal{S}}
\end{aligned}
$$

## Derivative of prox-TV

Remarks on the Jacobians $J_{x}$ and $J_{\mu}$

- They invoked a matrix inversion, which have a $\Theta\left(k^{3}\right)$ complexity
- Those inversions need to be computed at every iterations... but only for the training step!
- Those Jacobians are zero outside the support of $z$ : the smaller the support of $z$ the lesser we 'learn'


## Process summary

- Forward pass: use the Taut-string algorithm $(\Theta(k)$ complexity in most cases).
- Back-propagation pass: use the automatic-differentiation along with the analytic formulas of $J_{x}$ and $J_{\mu}$.


## Unrolled prox-TV

Similary, we can defined an inner neural network to solve:

$$
\begin{equation*}
z^{*}=\underset{z \in \mathbb{R}^{k}}{\arg \min } \frac{1}{2}\|h-L z\|_{2}^{2}+\mu\|R z\|_{1} \tag{21}
\end{equation*}
$$

## Process summary

- Forward pass: use the forward inner neural network.
- Back-propagation pass: use the automatic-differentiation through the inner neural network.


## Simulation

## Performance investigation

We generate $n=2000$ times series,
Such as $\left(u_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n \times k}$ with $k=8$
Each $u_{i}$ has a support of $|S|=2$ non-zero coefficients,
Let $A \in \mathbb{R}^{m \times k}$ as a Gaussian matrix with $m=5$,
We add Gaussian noise to measurements $x_{i}=A u_{i}$ with a SNR of 1.0.




Figure: Performance comparison for different regularisation levels (left) $\lambda=0.1$, $($ right $) \lambda=0.8$.

## Simulation

## Inexact Prox-TV error investigation

(Same experimental configuration than previously).



Figure: Proximal operator error comparison for different regularisation levels (left) $\lambda=0.1$, (right) $\lambda=0.8$.

## fMRI data deconvolution

## Performance investigation

We used UK Bio Bank (UKBB) dataset,
We retain only 8000 time-series of 250 time-frames ( 3 minute 03 seconds), We fix the HRF $h$ and estimate the neural activity signal $u$ for each voxels.


Figure: Performance comparison $\lambda=0.1 \lambda_{\max }$ between LPGD-Taut and iterative PGD for the analysis formulation for the HRF deconvolution problem with fMRI data.

## Conclusion

## Take-home message:

- The analysis formulation can be solved more efficiently with PGD than the synthesis formulation
- Unrolling the algorithm in the analysis allows to learn more efficient algorithm than unrolling in the synthesis
- We have a control over the error in the case of the inexact proximal operator, but in practice the obtained $T_{\text {in }}$ can be too 'high'.
- We will extend this work to the 2D case


## Questions?

