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FUNCTIONAL MAGNETIC RESONANCE IMAGING

BOLD signal → INDIRECT OBSERVATION OF NEURAL ACTIVITY

fMRI acquisition:
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[Ogawa et al, 1990, 1992]



FUNCTIONAL MAGNETIC RESONANCE IMAGING

BOLD model:
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CLASSICAL ANALYSIS PIPELINE

Task fMRI:

2

[Poldrack et al, Handbook of Functional 
MRI Data Analysis, 2013]
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Univariate (voxelwise) &
Explicit paradigm



CLASSICAL ANALYSIS PIPELINE

Task fMRI:

Resting-state fMRI:

2

3 independent components of the ICA on 
resting-state data (ADHD dataset)

[Varoquaux et al, 2009]

[Poldrack et al, Handbook of Functional 
MRI Data Analysis, 2013]

Univariate (voxelwise) &
Explicit paradigm



CLASSICAL ANALYSIS PIPELINE

Task fMRI:

Resting-state fMRI:

Multivariate &
Paradigm free

Univariate (voxelwise) &
Explicit paradigm

2

3 independent components of the ICA on 
resting-state data (ADHD dataset)

[Varoquaux et al, 2009]

[Poldrack et al, Handbook of Functional 
MRI Data Analysis, 2013]



LIMITATION OF CLASSICAL ANALYSIS PIPELINE
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Our objective:

● Develop a multivariate deconvolution approach for functional 
connectivity analysis of neural activation signals

➔ Accommodate both task and rs-fMRI data

● Multivariate extension of the ‘Total Activation’ framework [Karahanoglu et al, 2013]



OBSERVATION MODEL OF THE BOLD DATA

Model: multivariate approach (temporal components and corresponding spatial maps) 
with predefined HRF

4

P number of voxels
L HRF length
T number of scans

      the number of time points in the temporal atoms
K the number of atoms (model rank)
E additive Gaussian noise

Parameters to estimate:



OBSERVATION MODEL OF THE BOLD DATA

Model: multivariate approach (temporal components and corresponding spatial maps) 
with predefined HRF

4

P number of voxels
L HRF length
T number of scans

      the number of time points in the temporal atoms
K the number of atoms (model rank)
E additive Gaussian noise

Parameters to estimate:

[Friston et al, 2000]
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MULTIVARIATE DECONVOLUTION OF THE BOLD
DATA
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Spatio-temporal constrained optimization problem:

● Data fidelity term:

➔ The Gaussian noise leads to a quadratic loss

● Temporal components:

➔ TV regularization: promote sparsity of the 1st order derivative

● Spatial constraints:

➔ Positivity of each entry in each spatial map to avoid sign ambiguity with the corresponding 
temporal component

➔ L1 norm of each spatial map fixed to a certain level to avoid any scale ambiguity

[Karahanoglu et al, 2013]



MULTIVARIATE DECONVOLUTION OF THE BOLD
DATA
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● Strategy of minimization:

➔ The global cost function is bi-convex in (z
k
, u

k
): Each sub-problem is convex 

➔ We propose to alternate the minimization between the z
k
 and the u

k
. 

➔ The z
k
 are initialized to zero and u

k
 to a truncated Gaussian random vector (to ensure positive 

values for u
k
)

Spatio-temporal constrained optimization problem:



STRATEGY OF MINIMIZATION
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Minimization of the cost-function: different possible approaches

● z
k
 estimation step:

ISTA
FISTA
Restarting-FISTA
Greedy FISTA
Condat-Vu

[Daubechies et al. 2004]
[Beck, Teboulle, 2009]

[Liang et al, 2013]

[Condat, 2016]

Analysis formulation

[Liang et al, 2013]
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Minimization of the cost-function: different possible approaches

● z
k
 estimation step:

ISTA
FISTA
Restarting-FISTA
Greedy FISTA
Condat-Vu

[Daubechies et al. 2004]

[Liang et al, 2013]

[Condat, 2016]

Synthesis formulation

ISTA
FISTA
Restarting-FISTA
Greedy FISTA

[Daubechies et al. 2004]

[Liang et al, 2013]

[Liang et al, 2013]
[Liang et al, 2013]

Analysis formulation

[Beck, Teboulle, 2009]

[Beck, Teboulle, 2009]



CONVERGENCE RATE COMPARISON FOR THE 
RECOVERY OF NEURAL ACTIVATION SIGNALS 

Convergence rate comparison:

Convergence rate comparison for the
temporal components estimation problem
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STRATEGY OF MINIMIZATION
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Minimization of the cost-function: different possible approaches

● u
k
 estimation step:

ISTA, FISTA, Greedy FISTA: (cf. previous slide)

Mairal: coordinate descent with optimal step-size in the context of online learning

Mensch: based on Mairal’s algorithm with a subsampling along a dimension of the problem
[Mensch et al, 2016]

[Mairal et al, 2009]
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Convergence rate comparison:

Convergence rate comparison
for the spatial maps estimation

problem

9

CONVERGENCE RATE COMPARISON FOR THE 
RECOVERY OF SPATIAL ACTIVATION MAPS 



THE PROPOSED ALGORITHM

The final algorithm:
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Restarting-
FISTA

Mairal’s 
algorithm



SIMULATED DATA DECOMPOSITION

Simulated paradigm: two activation blocks
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Data:
● K

true
= 2

● T = 100
● TR = 1.0s
● P = 100
● Each true spatial maps contains a single square regions of ‘activity’
● Signal-to-noise ratio: 0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0 dB
● Each temporal component contains 2 blocks whose duration was fixed to 10 s and the magnitude 

was randomly drawn from a Gaussian distribution centred on 1.0.

In blue, the true temporal atoms
In black, the observed BOLD signal (here SNR = 1.0 dB)
In grey, the standard deviation across voxels encoded by 
transparency around mean curves

z
true

In yellow-purple maps 
define the spatial ground 
truth

u
true



SIMULATED DATA DECOMPOSITION

Simulated paradigm: two activation blocks

11

Data:
● K

true
= 2

● T = 100
● TR = 1.0s
● P = 100
● Each true spatial maps contains a single square regions of ‘activity’
● Signal-to-noise ratio: 0.1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0 dB
● Each temporal component contains 2 blocks whose duration was fixed to 10 s and the magnitude 

was randomly drawn from a Gaussian distribution centred on 1.0.

Algorithm parameters for estimation:
● K = 2
●    = 10.0
●    = grid-search for each SNR scenario
● Max-iteration = 30
● 3 initializations tested



SIMULATED DATA DECOMPOSITION

Simulation: two activation blocks case

12

Evolution of the z
k
-estimation error 

w.r.t the SNR
Evolution of the u

k
-estimation error 

w.r.t the SNR

(z
k
, u

k
) Evolution of the estimation error

➔ The estimation error decreases while the SNR increases



REAL MOTOR TASK DATA DECOMPOSITION

Motor task: Human Connectome Project (HCP) dataset
Data:
● HCP release: HCP-1200
● Motor task fMRI data
● One subject (randomly chosen)
● ~3min30s of acquisition
● Spatial resolution: 2x2x2mm
● P = 57790
● T = 284
● TR = 0.72s

13

Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van 
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for 
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

[www.humanconnectome.org]
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Motor task:
● Each condition were preceded by a visual cue of 3 s
● The motor tasks consisted of a sequence of right/left hands clenching and right/left foot 

squeezing
● Each condition lasted 12 s



REAL MOTOR TASK DATA DECOMPOSITION

Motor task: Human Connectome Project (HCP) dataset
Data:
● HCP release: HCP-1200
● Motor task fMRI data
● One subject (randomly chosen)
● ~3min30s of acquisition
● Spatial resolution: 2x2x2mm
● P = 57790
● T = 284
● TR = 0.72s

13

Decomposition parameters:
● K = 40
●    = 10.0
●    = 1.0e-2
● Max-iteration = 30
● 3 initializations tested

Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van 
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for 
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

[www.humanconnectome.org]

Motor task:
● Each condition were preceded by a visual cue of 3 s
● The motor tasks consisted of a sequence of right/left hands clenching and right/left foot 

squeezing
● Each condition lasted 12 s



REAL MOTOR TASK DATA DECOMPOSITION

Motor task: Human Connectome Project (HCP) dataset

Component #2 Visual cortex

Primary 
somatosensory 
cortex

14

Temporal activation

Supplementary 
motor area

Primary motor 
cortex

Component #12

Component #17

Component #29

Each motor task was cued by a visual instruction

10%-thresholded spatial map

c.t = 33 min



REAL RESTING-STATE DATA DECOMPOSITION

Resting state: Human Connectome Project (HCP) dataset

Data:
● HCP release: HCP-1200
● Resting-state fMRI data
● One subject (randomly chosen)
● ~14min of acquisition
● Spatial resolution: 2x2x2mm
● P = 57790
● T = 1200
● TR = 0.72s

15

Decomposition parameters:
● K = 10
●    = 10.0
●    = 5.0e-3
● Max-iteration = 30
● 3 initializations tested

Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van 
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for 
Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

[www.humanconnectome.org]



REAL RESTING-STATE DATA DECOMPOSITION

Resting state: Human Connectome Project (HCP) dataset

Component #1 Motor cortex

Default Mode 
Network

16

Temporal activation 10%-thresholded spatial map

Attention 
network

Visual cortex 
(V1)

Visual cortex 
(V2)

Component #3

Component #4

Component #8

Component #10

c.t = 6 min



REAL RESTING-STATE DATA DECOMPOSITION

Resting state: Human Connectome Project (HCP) dataset

17

Visual cortex 
(V1)

Visual cortex 
(V2)

K = 10
10%-thresholded spatial map

c.t = 38 min

K = 40
10%-thresholded spatial map



REAL RESTING-STATE DATA DECOMPOSITION

Resting state: Human Connectome Project (HCP) dataset

17

Visual cortex 
(V1)

Visual cortex 
(V2)

K = 10
10%-thresholded spatial map 10%-thresholded spatial map

c.t = 38 min

K = 40



CONCLUSION

18

Future works:
● Blind deconvolution: estimate one HRF for each predefined brain region

● Unsupervised estimation: estimate   , K (model comparison: r2 score, etc)

● Characterize the statistical properties of the decomposition (neural activity signals)

● Validation on large scale datasets (HCP, Synchropioïd, etc)

Summary:
● We provided a new low-rank decomposition of the BOLD signal which yields 

deconvolved neural activity signals and their corresponding spatial maps

● The proposed algorithm performs this decomposition in a reasonable computing time

● We showed that our method provides meaningful decomposition on the neural activity 
in resting-state and task fMRI
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Future works:
● Blind deconvolution: estimate one HRF for each predefined brain region

● Unsupervised estimation: estimate   , K (model comparison: r2 score, etc)

● Characterize the statistical properties of the decomposition (neural activity signals)

● Validation on large scale datasets (HCP, Synchropioïd, etc)

https://github.com/CherkaouiHamza/seven

Summary:
● We provided a new low-rank decomposition of the BOLD signal which yields 

deconvolved neural activity signals and their corresponding spatial maps

● The proposed algorithm performs this decomposition in a reasonable computing time

● We showed that our method provides meaningful decomposition on the neural activity 
in resting-state and task fMRI
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